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A semi-empirical model for unsteady axial forces is developed to predict the spectral features
of the force generated by the flow over the end-caps on a finite-length, right circular cylinder in
cross-flow. In general, the model consists of two parts: the spatial variation of r.m.s. wall
pressure on the cylinder end-caps, and the correlation lengths and areas, which describe the
spatial extent of the correlation of the unsteady wall pressures. Experiments were conducted in
a low-noise wind tunnel as a function of cylinder diameter Reynolds number
(19 2005Re532 000) and the Strouhal number (0�055St53�33) to measure the statistics of
the unsteady wall pressures on a model cylinder. These results are incorporated into the
theoretical models, and prediction of the spectral characteristics of the axial force are made.
The r.m.s. wall pressures on the end-caps are found to have the largest amplitude at
circumferential locations (from the forward stagnation point) in the 90–1208 range. The high
levels at these locations are attributed to reattachment of the separated flow over the end-cap.
The radial and circumferential correlation areas have a maximum value at St=0�21. Due to
the 3-D flow over the end-caps, the radial correlation areas are found to depend on the
circumferential measurement reference location, and the circumferential correlation lengths
are found to depend on the radial measurement location. The unsteady axial force predictions
using the model show a very broad spectral character.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Suspended underwater acoustic sensors are used in numerous applications for the
measurement and localization of underwater sound sources. The performance of these
sensors is degraded by the presence of various background noise sources such as: oceanic
ambient noise, electronic noise, mechanical suspension-induced noise, and flow noise.
Flow noise results from the sensor being located in an environment where fluid flows over
the body of the sensor. In the case of sensors configured as bluff bodies, the fluid is
disturbed as it passes over the sensor, resulting in turbulence on the surface and in the
wake of the body. The turbulence produces time-dependent pressure fluctuations on the
surface of the sensor, which result in forces acting on the sensor. Pressure, pressure
gradient, and acoustic velocity hydrophones, in addition to acoustic intensity probes,
respond to these unsteady body forces, resulting in a spurious signal known as flow noise.
The problem is particularly important for inertial sensors; the outputs of which are
proportional to acoustic particle velocity or acceleration. One common shape used for
underwater acoustic sensors is that of a finite-length right circular cylinder. Finger et al.
0889-9746/02/050667+17 $35.00/0 # 2002 Elsevier Science Ltd. All rights reserved.
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(1979) and McEachern & Lauchle (1995) have shown that the unsteady forces on such
finite-length cylinders can result in flow-induced self-noise being the major component of
the transducer output signal.
Significant research has been performed on the measurement and prediction of unsteady

lift and drag on 2-D, or ‘‘infinite-length’’, cylinders in cross-flow. Ribeiro (1992) provided
a comprehensive review of the fluctuating lift and spanwise correlation characteristics
determined for 2-D cylinders. Considerably less work has been done on the unsteady lift
and drag on finite-length, or 3-D cylinders, due to the complexity of the problem and due
to the limited application of the results. To date, no data are available on the unsteady
axial forces generated on finite-length cylinders in cross-flow.
The work of McEachern (1993) and McEachern & Lauchle (1995) quantified the

unsteady lift and drag on finite-length, cylindrical-shaped hydrophones of various aspect
ratios and end-cap corner radii. They found that the flow-induced noise on a pressure
gradient, or acoustic particle velocity hydrophone decreases as the aspect ratio increases.
They also found an optimum corner radius for minimum flow noise output, and that the
unsteady force spectra are broadband. Considerable energy at frequencies above the
predicted vortex-shedding frequency was observed. This observation is consistent with those
of Keefe (1961), who noted that the flow over the cylinder body near open clearance holes in
the tunnel wall caused a decorrelation of the vortex-shedding process behind the cylinder,
resulting in wake energy which is more broadband in nature. Farivar (1981) measured
fluctuating pressures and forces on a cylinder with one end free and the other end mounted
to the wall of a wind tunnel. The length-to-diameter ratio (L=D) ranged from 2�78 to 12�5 at
a Reynolds number based on free-stream velocity and cylinder diameter of 7�0� 104.
Definite vortex-shedding frequencies are present on the signals of the pressure sensors for
L=D > 7�5, but for smaller aspect ratios, no discrete shedding frequency was detected.
Baban et al. (1989) measured unsteady forces on both a 2-D and a 3-D cylinder with one

free end. Flow visualization showed an unsteady flow reversal region behind the 3-D
cylinder. The size of this reversed flow region is approximately two cylinder diameters in
streamwise length, and of width comparable to the span (L) of the cylinder. The presence
of the separated flow over the end of the cylinder and the large unsteady recirculation zone
inhibits the formation of coherent vortices along the span of the cylinder. The fluctuating
local drag for the 3-D case was found to be larger than the fluctuating local lift measured
near the free end of the cylinder.
Due to the complexity of the flow field for the given cylinder orientation, no analytical

model for the unsteady axial force generated on a finite-length circular cylinder in either
steady or unsteady flow exists. The objective of this work is to develop semi-empirical
models for the statistics of the end-cap surface pressure field, in order to predict the
spectral features of the unsteady axial force on finite-length, right circular cylinders in
uniform, steady cross-flow. It represents an extension of our previous work (Capone &
Lauchle 2000) that considered the unsteady lift and drag forces. The models together can
be used for the prediction of the statistical features of the flow noise signal of inertial
acoustic sensors of this configuration.

2. THEORY

The coordinate system for the circular cylinder is shown in Figure 1. For a single end-cap,
the unsteady axial force is given by

fzðtÞ ¼
Z a

0

Z 2p

0

pðr; y; tÞr dr dy; ð1Þ
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Figure 1. Coordinate system for the right circular cylinder in cross-flow.
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where pðr; y; tÞ is the unsteady pressure on the surface of the end-cap, and a is the radius of
the end-cap. Axially oriented unsteady wall shear stresses on the cylindrical portion of the
body are assumed negligible in this description of fzðtÞ. The autocorrelation of the
unsteady axial force, using the notation of Bendat & Piersol (2000) for stationary signals,
may be represented as

Rfzfz ðtÞ ¼ E fzðtÞfzðtþ tÞ½ �; ð2Þ

where the variable t is the time delay between any two signals and E[ ] represents the
expected value which is an ensemble average over N records. Substitution of equation (1)
into equation (2) yields

Rfzfz ðtÞ ¼
Z a

0

Z a

0

Z 2p

0

Z 2p

0

E pðr; y; tÞpðr0; y0; tþ tÞ
� �

r dr r0 dr0 dy dy0: ð3Þ

Twice the temporal Fourier cosine transform of equation (3) results in the one-sided
autospectrum for the unsteady axial force

Gzzðf Þ ¼
Z a

0

Z 2p

0

Z a

0

Z 2p

0

Gðf ; r; r0; y; y0Þr dr dy r0 dr0 dy0; f 
 0: ð4Þ

Here, Gðf ; r; r0; y; y0Þ is the cross-spectral density of the wall-pressure fluctuations on the
end-cap.
It can be seen from equation (4) that the spectrum of the unsteady axial force on the

cylinder can be calculated if the wall-pressure cross-spectra among all points on the end-
cap of the cylinder are known. In this research, we consider equation (4) with a model of
the cross-spectral densities and corresponding correlation areas. The model for the
unsteady axial force is developed in a manner that permits calculations of the unsteady
forces on similar cylinders in cross-flow, with knowledge of only a limited number of
experimental measurements.

2.1. Model for the Unsteady Axial Forces

A frequency-dependent correlation area (Crighton et al. 1992) for the unsteady axial force
is defined as

Sceðf ; r; yÞ �

R a

0

R 2p
0 Gðf ; r; y; r0; y0Þr0 dr0 y0 dy0

Gðf ; r; yÞ
; ð5Þ
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where Gðf ; r; yÞ represents the one-sided autospectrum of the wall-pressure fluctuations at
location r and y. The larger the region over which the pressures are correlated, the larger
the value for the correlation area, and hence the larger will be the unsteady axial force on
the cylinder.
For convenience, we will assume

Sceðf ; r; yÞ ¼ Lrðf ; r; yÞLyðf ; r; yÞ; ð6Þ

where Lrðf ; r; yÞ and Lyðf ; r; yÞ are the radial and circumferential scales, respectively.
Dependence on all variables must be retained because of the inhomogeneity of the wall-
pressure field. Before defining these scales, a change of variables will be made in the cross-
spectral density representation used in equation (4). In particular, let y0 ¼ Dyþ y and
r0 ¼ Drþ r. The new variables allow for the measurement of cross-spectral densities as
functions of both reference measurement location, and separation distance. With the
specified changes in variables, and the form of equation (6), the end-cap radial correlation
scale, is actually a correlation area defined by

Lrðf ; r; yÞ ¼
Z a�r

�r

Gðf ; r;DrÞ
Gðf ; r; yÞ

ðrþ DrÞ dDr: ð8Þ

The circumferential correlation scale is in radians according to

Lyðf ; r; yÞ ¼
Z 2p�y

�y

Gðf ; y;DyÞ
Gðf ; r; yÞ

dDy: ð9Þ

The last step in the modelling of the unsteady axial forces, is the introduction of a
simplified representation for the surface pressure spectrum on the cylinder end-cap. Let

Gðf ; r; yÞ ¼ Gprpr ðf ; rr; yrÞBðr; yÞ; ð10Þ

where Gprpr ðf ; rr; yrÞ is a reference autospectral density of the wall pressure, pr, measured at
a specified reference location (rr, yr). The function Bðr; yÞ is an empirically determined
function describing the dependence of the mean-square value of the unsteady wall pressure
on measurement location. For this investigation, Gprpr is taken at the center of the end-cap,
(rr, yr)=(0,0).
Nondimensionalizing length variables on the end-cap radius, and substituting equations

(10), (9) and (8) into equation (4) results in the final form for the autospectral density for
the unsteady axial force on the 3-D cylinder in cross-flow:

Gzzðf Þ ¼ Gprpr ðf ; rr=a; yrÞa
4

Z 1

0

Z 2p

0

Lrðf ; r=a; yÞLyðf ; r=a; yÞBðr=a; yÞ
r

a

� �
d

r

a

� �
dy: ð11Þ

Using the autospectral density for the unsteady axial force, the r.m.s. axial force coefficient
is defined as C0

a ¼ Gzzðf Þ=12rU
2
1A: In the next section, we will present the experimental

methods used to determine the unsteady wall pressures on the cylinder end-cap. Analysis
of the measured cross-spectral density functions will determine the scales and functional
forms of the parameters needed in equation (11).

3. EXPERIMENTAL SETUP

3.1. Wind Tunnel

Fluctuating wall pressure measurements were made on a 0�305m long� 0�153m diameter
aluminum cylinder in a specially designed low-noise wind tunnel located in a semi-
anechoic chamber. The cylinder aspect ratio was chosen to correspond to that commonly
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used for underwater acoustic surveillance sensors. The cylinder diameter was chosen to
produce Reynolds numbers in the range of tunnel operation that would correspond to
underwater acoustic sensors exposed to, due to oceanic currents in the 0�1–0�5 knot range.
The cylinder was rigidly mounted to a sting attached to the mid-point of the cylinder at the
rearward stagnation point. This mounting arrangement provided a finite-length cylinder
with two ends, which were free of mounting-induced flow disturbances. A side-view of the
wind tunnel test section is shown in Figure 2. The 11:1 contraction section of the wind
tunnel leads to a 0�457m square test-section, 1�50m long, resulting in a tunnel blockage of
22%. In the subcritical range, Richter & Naudascher (1976) showed an increase in cylinder
unsteady lift and a decrease in cylinder unsteady drag for increasing blockage ratios. Work
by Blackburn (1994) showed little to no change in measured correlation lengths, obtained
from spanwise surface pressure measurements, as a function of blockage ratio, for
transducer separation distances less than twice the diameter. No blockage corrections were
applied to the data presented here. Downstream, the test-section diffuses at a 78 angle to
slow the flow, thereby minimizing acoustic radiation from the trailing edge of the open-
ended exit. The cylinder was held by a 0�305m long sting attached to a vertical steel tube
with an aerodynamic cross-section.
Prior to making unsteady pressure measurements on the cylinder, both the mean, U1,

and the fluctuating, u0, velocity field in the test-section were measured using a single-
component hot-wire anemometer. Mean velocity profile surveys were conducted over a
plane normal to the flow direction and situated at the leading edge of the cylinder. The
speeds considered were 1�83, 2�44 and 3�06m/s, which correspond to cylinder diameter
Reynolds numbers of Re=19 200, 25 600, and 32 000, respectively. The mean velocity
across the test-section was within � 2�0% of that measured at the center-line. The
streamwise component of turbulence intensity at the same location was less than 0�5% for
all three speeds.
Flow
0.457 m

0.305 mstand-off
Cylinder

0.305  mlong ×0.152  m diam

Test-section

To HP3567Aanalyzer

Pressure transducers (4)
Endevco 8507C-2

Power supply

x

y

Figure 2. Side-view of wind tunnel test-section, with cylinder mounted in test position.
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3.2. Unsteady Wall-Pressure Measurements

Unsteady wall-pressure spectral measurements were made for 1 � f � 40 Hz correspond-
ing to Strouhal numbers, 0�05 � fD=U1 � 3�33. Detailed results for Re=19 200 and
32 000 will be presented in this paper. Results for Re=25 600 will be used to formulate
conclusions and to verify the scaling relationships developed. For all Reynolds numbers, a
detailed map of the unsteady wall-pressure field on the cylinder end-cap was acquired.
Spectral data were obtained using a Hewlett Packard (HP) 3567A dynamic signal
analyzer. The analyzer was set up with 256 averages, Hanning window, 800 lines of
resolution, and a 2048 line FFT. For the case of 256 averages, the normalized random
error (Bendat & Piersol 2000) is � 0�0625. This error produces spectral estimates, with
95% confidence intervals, of � 12�5%. The acquired data were corrected to a 1Hz
bandwidth. The wind tunnel background noise was determined from the unsteady wall-
pressure measurement at the forward stagnation point of the cylinder. Prior to mounting
the model in the test-section, the background noise of the tunnel was measured at all three
flow speeds using the B&K microphone mounted in a slit tube. The slit tube allows
measurement of the background acoustic noise in a wind stream while discriminating
against boundary layer flow noise on the sensor. For Re=32 000 the r.m.s. value of the
background acoustic noise in the tunnel, normalized by the dynamic head, was measured
to be 0�02. Measurements of the normalized r.m.s. unsteady surface pressures on the end-
cap typically ranged from 0�02 to 0�26. The unsteady pressures on the end-cap of the
cylinder were measured using four individual Endevco 8507C-2 piezoresistive pressure
transducers. These transducers have an active sensing diameter of 0�234 cm.
The cylinder end-cap was perforated with four, 0�320 cm diameter measurement holes,

and 12 0�930 cm diameter mounting holes. The measurement holes were located radially at
r=0�0, 0�025, 0�051, and 0�067m. The 12 mounting holes were used to rotate the end-cap
in 308 increments. At each angular orientation, data from all four pressure transducers
were acquired simultaneously. The unsteady pressure transducer in the center of the end-
cap remained fixed throughout the measurement procedure. In this manner, a total of 37
independent unsteady surface pressure measurements were acquired. The 36 cross-spectral
measurements from the 12 angular and three radial locations are all referenced to the
transducer in the center of the end-cap. The cross-spectra between the center location and
three radial locations on the opposite end-cap were also acquired.
Performing the end-cap measurements in the manner described above allows two

methods of analyzing the data. The spatial nonhomogeneity of the pressure field can be
determined from examination of the individual pressure measurements. Also, using the
center pressure transducer as a reference, radial and circumferential correlation scales can
be computed for the end-cap.

4. RESULTS

4.1. End-Cap Unsteady Wall-Pressure Power Spectral Densities

The fluctuating wall pressures on the cylinder end-caps are expected to be nonhomogenous
due to the locally separated flow region over the end-cap. The power spectral densities
measured at discrete locations along the end-cap center-line in the streamwise x-direction
are shown in Figure 3 for Re=32 000 and 19 200. It is evident from Figure 3 that the
magnitude of the unsteady wall pressure depends on the streamwise measurement
location. The highest unsteady pressure levels at r=a ¼ 0�33 and y ¼ 1808 may be due to
the reattachment of the separated flow. Flow visualization of this phenomenon is given in
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Figure 3. Circumferential variation of end-cap r.m.s. wall pressure level for a fixed radial location for
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McEachern & Lauchle (1995). Power spectral densities measured along a radial direction
normal to the mean flow vector, y ¼ 908, are shown in Figure 4. The unsteady pressure
levels across the span of the end-cap remain relatively constant; thus, the nonhomogeneity
of the pressure field appears to be primarily in the streamwise direction.
In order to facilitate the modelling of the unsteady forces on the body, a functional form

of the r.m.s. value of the unsteady wall pressures on the cylinder end-cap was determined.
A least-squares fit to the measured end-cap r.m.s. unsteady wall-pressure levels is shown in
Figure 5. Note that the r.m.s. pressures are normalized by the dynamic head of the free
stream, q ¼ 1

2
rU2

1. Only the 0–1808 region of the end-cap is considered due to the
symmetry of the end-cap flow about the x-direction. The symmetry of the flow was verified
by comparing the r.m.s. values for the three radial locations along the y-axis at y ¼ 908
with those at the y ¼ 2708 location. These measurements agree within the experimental
accuracy of the experiments.
As observed in the data of Figure 5, the r.m.s. pressure levels are highest near the

y ¼ 9021208 locations for radial location r=a ¼ 0�88, and the y ¼ 15021808 locations for
radial locations r=a ¼ 0�33 and 0�67. Figure 3 shows that along the cylinder centerline the
highest unsteady pressure levels are at the y ¼ 1808, r=a ¼ 0�33 location. Thus, it is likely
that the high unsteady pressure levels in the region downstream of the end-cap center
position, r=a ¼ 0�0, are due to the reattachment of the separated flow onto the end-cap.
Figure 1 of McEachern & Lauchle (1995) shows this flow field very clearly.
The reference autospectral density, Gprpr ðf ; 0; 0Þ, used in equation (10), provides the

frequency content of the end-cap local wall-pressure fluctuations at a well-defined point.
The variation of this spectral information over the end-cap is thus contained in the curve
fitting of Bðr=a; yÞ.
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Figure 4. Spanwise variation of the unsteady wall-pressure power spectral density. (a) Re=32000
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Assuming the radial and circumferential dependence of the r.m.s. pressure is separable,
a second-order polynomial curve fit for the circumferential variation is

BðyÞ ¼
prefrms
q

ðf2y
2 þ f3yþ f4Þ: ð12Þ

Here, prefrms is the reference location r.m.s. pressure fluctuation, and the empirical constants
f22f4 are arithmetic averages of the respective coefficients determined from the data
measured at all three Reynolds numbers. The radial variation of the r.m.s. pressure
fluctuation is given by

prms

prefrms
¼ ef1½ðr=aÞ�1�: ð13Þ

Here f1 is the empirical constant again determined from an average over all Reynolds
numbers considered. Combining equation (13) with (12) results in

Bðr=a; yÞ ¼
prefrms
q
ef1½r=a�1�ðf2y

2 þ f2yþ f4Þ; ð14Þ

where f1 ¼ 0�30, f2 ¼ �0�18, f3 ¼ 0�70, and f4 ¼ 0�50.
Comparisons of the predictions made with equation (14) with the experimental data of

Figure 5 are shown in Figure 6. The model captures the main features of the r.m.s. wall-
pressure fluctuations on the end-cap of the cylinder within the range of Reynolds numbers
considered. Variations between model and data are due to the averaging of the empirical
constants over all Reynolds numbers and to the selection of a second-order polynomial for
BðyÞ.
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4.2. End-Cap Radial Correlation Areas

The end-cap radial correlation areas are calculated from equation (8) using the measured
unsteady pressure cross-spectral data as a function of angular orientation and Strouhal
number. Due to the limited number of measurement locations in the radial direction, the
only reference location used for the radial cross-spectral measurements is r ¼ 0. Cross-
spectra were measured at discrete pairs of separation points, but the correlation length
calculation requires a continuous representation of the cross-spectra as a function of
separation distance. Therefore, a polynomial fit to the measured cross-spectral data is
numerically integrated to produce the correlation lengths at each measured frequency and
given reference location. Some frequency-to-frequency variation in the computed
magnitude was observed. This is due to the relatively large spatial resolution and the
relatively narrow frequency resolution of the measurements.
The radial correlation areas based on a least mean-square fit of the measured cross-

spectral density functions are shown in Figure 7. Additional circumferential locations and
greater detail is given in Capone (1999). For St50�30, the correlation areas are small, while
they remain essentially constant from 0�305St52�0. The extent of the region of separated
flow over the end-cap defines the largest scale eddies which exist in the flow. Below a certain
cut-off frequency, in this case around St=0�30, the flow cannot support structures larger
than the largest eddies in the separated flow; hence, the correlation areas approach zero very
rapidly for the small Strouhal numbers. These results are consistent with the results of flow
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visualization, shown in Figure 8, performed by Cimbala & Lauchle (1987). Figure 8 shows a
large-scale eddy with a size on the order of the cylinder diameter. Using a characteristic
length of the cylinder diameter, St=0�30, and a flow velocity of 3�05m/s (Re=32000), the
unsteady pressures on the end-cap should peak around 6Hz.Figure 3(a) and 4(a) show a
peak in the unsteady pressures between 4 and 5Hz, indicating a maximum length scale
slightly larger than D. For St>2�0, the area decreases slightly with increasing St. This
gradual decay is indicative of shorter characteristic length scales. In general, larger, low-
frequency flow structures maintain their identity over a given separation distance better than
higher-frequency, smaller-scale eddies. This results in a weak decay of the radial correlation
areas with increasing Strouhal number. The magnitudes of the radial correlation areas show
little variation over the range of Reynolds numbers tested. This is consistent with the results
of West & Apelt (1997), who found no measurable variation in the spanwise cross-
correlation of pressure for a cylinder subjected to low turbulence flow in the subcritical range.
The Strouhal-number dependence of the radial correlation areas is modelled using an

equation similar to that for a Rayleigh probability distribution function. The correlation
area is represented by

LrðStÞ
a2

¼
h1St

h22
exp

�St 0:35

ð2h22Þ

� �
; ð15Þ

where h1 and h2 are empirical constants.
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Figure 8. Smoke wire flow visualization of the flow over the end-cap of a right circular cylinder at Re=33000
(after Cimbala & Lauchle (1987)).
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The variation of the radial correlation area with circumferential location is determined
from cross plots of the data as a function of y at constant St. Analysis of the results given
in Figure 7 shows that the correlation areas are the smallest at y ¼ 0 and 608, peak at 1208,
and then decrease slightly at 1808. The increase in correlation areas around the 1208
location is presumed to be a result of the proximity to the end-cap separated flow
reattachment location. For example, the approximate downstream location of reattach-
ment along the x-axis is y ¼ 1808, r=a ¼ 0�33. Assuming that the reattachment line is
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parallel to the y-axis, this corresponds to an off x-axis location of r=a ¼ 0�66 for y ¼ 1208.
For separated flow over a backward facing step, Farabee (1986), found streamwise
coherence values aft of the flow reattachment point to be significantly higher than those
for the nonseparated, equilibrium flow. Given this, the increase in correlation areas
around the 1208 location makes physical sense. Assuming the correlation area peaks at
1208, and it has approximately the same value at 60 and 1808, the empirical curve fit for the
circumferential variation of the end-cap correlation area is given by

LrðyÞ
Lrref

¼ 1þ 0�5 sin
3y
4

	 

; ð16Þ

where Lrref is the reference correlation area determined at y ¼ 08.
Combining equations (15) and (16) yields the radial correlation area as a function of

Strouhal number and angular location

LrðSt; yÞ
a2

¼
h1St

h22
exp

�St0:35

ð2h22Þ

� �
1þ 0�5 sin

3y
4

	 
	 

Lrref ; ð17Þ

where h1 ¼ 7�5, and h2 ¼ 0�4.
Predictions using equation (17) are compared to the radial length-scales for y ¼ 0 and

1208 at Re=32 000 and 19 200 in Figure 9.
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Figure 9. Empirical fit of the end-cap radial correlation areas as a function of Strouhal number and
circumferential location compared to measured data with a reference location of y=08; (a) Re=32 000, (b)

Re=19 200: - - - - - - -, y=08; , fit, 08; , y=1208; and , fit, 1208.
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4.3. End-Cap Circumferential Correlation Lengths

The end-cap circumferential correlation lengths, equation (9), were also calculated from
the measured unsteady pressure cross-spectral data. These length-scales are computed as a
function of radial location and frequency, and a suggested model form is derived.
The least-squares fit to the experimentally determined circumferential length-scales for

the single reference location of y ¼ 08 are shown in Figure 10. The Strouhal number
dependence of these scales is similar to that of the radial correlation areas. After the peak
near St=0�21, the correlation lengths decay slowly a with increasing Strouhal number. The
dependence of Ly on Strouhal number is obtained using the equation:

LyðStÞ ¼
h3St

h24
exp

�St0:42

ð2h24Þ

� �
; ð18Þ

where h1 and h2 are empirical constants.
The circumferential correlation lengths are highest for r=a ¼ 0�33 and decrease with

increasing radial position. This decrease for increasing radial location is not unexpected
based upon the definition of Ly, equation (9). The length-scales are computed as a
function of Dy for all radial locations. Although the angular separation is constant for
each radial location, the physical separation between measurement points increases with
increasing radial location. Therefore, for a given Dy the magnitude of the cross-spectral
density function measured at r=a ¼ 0�88 is typically lower than that measured at smaller
values of r=a.
The variation of the circumferential correlation lengths with radial location is

determined from cross plots of the length-scale data as a function of r=a at constant St.
Combining the radial dependence of the length-scales with the Strouhal dependence
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Figure 10. Circumferential length-scales at Re=32000 and 19 200 for radial locations of r/a=0�33, 0�67, and
0�88, and a reference location of y=08; (a) Re=32000, (b) Re=19200: }}, r/a=0�33; - - - - - - -, r/a=0�67;

and , r/a=0�88.
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provides the final form for the end-cap circumferential length-scales:

LyðSt; r=aÞ ¼
h3St

h24
exp

�St0:42

ð2h24Þ

� �
h5 exp h6ðr=a� 1Þ

� �
; ð19Þ

where h3 ¼ 1�05, h4 ¼ 0�45, h5 ¼ 0�37 and h6 ¼ 1�5.
Predictions based on equation (19) are compared to the measured circumferential

lengthscales in Figure 11.

5. UNSTEADY FORCE PREDICTIONS

The unsteady axial force spectrum is calculated using equation (11) together with the
model results from equations (14), (17) and (19). Figure 12 shows the coherence function
measured between pressure sensors located at r=a ¼ 0�0 and on the two opposing end-
caps. Coherence measurements between the r=a ¼ 0�0 location on the first end-cap and
y ¼ 908, r=a ¼ 0�67, and 0�88 on the second, show a similar low coherence level. Based on
these low coherence values measured between the opposing end-caps, the total unsteady
axial force acting on the cylinder is calculated by assuming the forces on each end can be
summed incoherently.
The calculated spectra are presented in Figure 13 as dimensionless fluctuating force

spectrum, where A is the area of the cylinder end-cap. Note that the use of the reference
autospectral density, Gprprð f ; rr; yrÞ, in equation (10) results in a predicted unsteady force
spectrum with a character similar to that of the reference wall-pressure spectrum. The data
are seen to collapse well using the inertial force and time scales of the flow for
nondimensionalization. This is consistent with the results of McEachern & Lauchle (1995)
for flow noise on operational sensors.
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Currently, no published data are available for validation of the predicted unsteady axial
force. For future comparison purposes, the r.m.s. unsteady axial force coefficient,
computed for the three Reynolds numbers tested, 32 000, 25 000, and 19 200 are 0�020,
0�021, and 0�019, respectively. Also, a comparison to the power summation of the absolute
levels of the unsteady lift and drag on the same finite cylinder, Capone & Lauchle (2000), is
shown in Figure 14. Absolute levels are compared here, because different reference areas
are required for normalization of the unsteady forces for the two cases. Above 10Hz, the
unsteady axial force levels are larger than those of the combined unsteady lift and drag.
Below 10Hz, the unsteady lift and drag are the dominant unsteady force. Converting to a
Strouhal number scale, this cross-over frequency corresponds to St=0�83. Even in the
absence of a clear coherent vortex-shedding process from a 3-D cylinder, the predominant
energy in the fluctuating lift and drag fluctuations is concentrated in a broad spectral
hump centered at the Strouhal shedding frequency. This is in marked contrast to the
discrete tone observed in the force spectra of 2-D cylinders. Our results further suggest
that the separated flow region over the end-caps of the 3-D cylinder results in a relatively
broadband axial forcing function with no apparent connection to the cylinder shedding
frequency.
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6. CONCLUSIONS

Measurements of the unsteady pressure field on the cylinder end-cap show the highest
r.m.s. wall-pressure levels to be in the 90–1208 locations. The high r.m.s. pressures in these
locations are due to flow reattachment across the span of the end-cap, and to the
proximity to the separation point on the cylinder body. In view of the unsteady lift and
drag reported by Capone & Lauchle (2000), the unsteady wall-pressure power spectral
data on the end-cap show much different frequency character than wall-pressure spectra
measured on cylindrical surfaces. Due to the strong contribution from coherent vortex
shedding, the energy in the wall-pressure fluctuations measured on the cylindrical surfaces
is concentrated in a Strouhal number range below St=0�5, while energy in the wall
pressures measured on the end-cap is much more evenly distributed over Strouhal number.
The radial correlation areas and circumferential length-scales on the end-cap do not

decay as rapidly with increasing Strouhal number, as do the axial and circumferential
length-scales on the cylindrical surface. This is due to the low-frequency, large eddy
structures present in the end-cap flow. The radial correlation area on the end-cap is a
maximum at the 1208 location. The circumferential length-scale decreases with increasing
radial location. This, however, is an artifact of the experiment due to the variation of
angular separation distance with changing radial location. For St50�8, the predicted
unsteady axial forces are considerably smaller than the unsteady lift or drag forces (as
much as 20 dB). Even in the absence of an axially coherent discrete vortex-shedding
process, the majority of the energy in the fluctuating lift and drag spectra is concentrated
about the Strouhal shedding frequency. The axial force spectra are much more broadband,
indicating that the shedding from the cylindrical surface has little effect on the unsteady
axial force fluctuations.
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